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Abstract Fifteen C;¢ isomers were examined to determine
the influence that the quality of basis sets has on the geometry
parameters, the relative stability and HOMO-LUMO energy
gaps of fullerene isomers calculated with density functional
theory. It is worthwhile to note that the geometry parameters
of all C;¢ isomers are insensitive to basis sets. On the other
hand, one set of d-type polarization functions plays an impor-
tant role in evaluating relative stability and HOMO-LUMO
energy gaps, while diffuse functions are not effective. To
obtain reliable energies, at least a double-zeta plus polari-
zation basis set is required, and a triple-zeta plus polariza-
tion basis set is suggested to lead to accurate energies at a
reasonable computational cost.

Keywords Fullerene - Basis set - Relative energy -
HOMO-LUMO energy gap - Csq

Introduction

Fullerenes are usually considered as even-numbered cages
built only from pentagons and hexagons and based entirely on
sp? -hybridized carbons (conventional fullerene). Since the
discovery [1] and synthesis [2] of fullerenes, their chemistry
has developed very rapidly. The stable and the most abun-
dant fullerene is the Iy-symmetrical buckminsterfullerene,
Ceo- The next stable homologue is Crq, followed by higher
fullerenes such as Cy¢, C7g, Cgo, Cga, Cgy, etc. [3—8]. Some
fullerenes smaller than Cg, such as C,o and C,g, were found
to be stable in gas phase cluster-beam experiments [9]. The
fullerene Cs¢, was produced by the electric DC arc-discharge
method by Zettl and co-workers [10], and purified C3¢ mate-
rials found to exist as a cluster-assembled materials in the
solid state, not as a molecular form like Cgg [11].
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A number of isomers of fullerenes were investigated and
characterized [12-24], and the structures and relative sta-
bilities of fullerenes were calculated by theoretical meth-
ods [15-24]. Since it is not practical to calculate fullerene
isomers using high-level ab initio correlation methods, density
functional theory (DFT)-based approaches were usually em-
ployed along with Pople-type basis sets ranging from STO-3G
to 6-31G(d) in such calculations, but it is not clear what influ-
ence the size of the basis set with a given functional would
have.

In the present work, we report the results of calculations
on Csq fullerene (Fig. 1), in which the effects of basis sets on
relative energies and energy gaps between the highest occu-
pied and lowest unoccupied molecular orbitals (HOMO and
LUMO) are explored. The HOMO-LUMO energy separation
was used as an index of kinetic stability for fullerenes [25,
26]. It is well known that a small HOMO-LUMO energy gap
implies low kinetic stability, because it is energetically favor-
able to add electrons to a low-lying LUMO and to receive
electrons from a high-lying HOMO [25,27,28].

To the best of our knowledge, there was no systematic
study for basis set convergence on relative energies and
HOMO-LUMO energy gaps of fullerene isomers. In the pres-
ent study, thirteen basis sets up to cc-pVQZ were employed,
and the effects of polarization functions and diffuse functions
were determined. The results of this work may be useful for
other workers in choosing the most appropriate basis set for
fullerenes when performing DFT calculations.

Computational details

The calculations were based on DFT at the generalized
gradient approximation (GGA) level (Becke’s 1988 func-
tional for exchange and Perdew-Wang’s 1991 functional for
correlation: BPW91 [29,30]), and an ULTRAFINE grid was
employed to calculate the integrals for all calculations. Fifteen
Cs6 fullerene isomers were optimized using 3-21G,
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Fig. 1 Structures of 15 C34 fullerene isomers

4-31G, 6-31G, 6-31G(d), 6-31G(2d), 6-31+G(d), 6-311G(d),
6-311+G(d) [31], cc-pVDZ, aug-cc-pVDZ, cc-pVTZ,
aug-cc-pVTZ, and cc-pVQZ [32]. The cc-pVQZ basis set,
which includes three ‘d’, two ‘f’, and one ‘g’ functions
on a carbon atom, has 1980 basis functions for Czs. The
geometry optimizations were performed within the symme-
try constraints. Vibrational frequency calculations were per-
formed to verify the local minima of isomers for all basis sets
except for aug-cc-pVTZ and cc-pVQZ. The density functional
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Isomer 15 (Dgy)

calculations were performed with the Gaussian98 program
package [33].

Results and discussion

Fifteen Cs¢ isomers were optimized with thirteen basis sets
up to cc-pVQZ and their optimized structures are shown in
Fig. 1. The root mean square (RMS) deviation and maximum
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Table 1 Root mean square (RMS) deviations and maximum deviation (MaxD) of bond lengths and angles of C36 isomers, comparing with those

of cc-pVQZ. (unit : bond length — A, angle — degree)

Basis set Bond length Angle Number of basis sets
RMS Max RMS Max

321G 0.0127 0.0351 0.36 1.61 324
4-31G 0.0101 0.0288 0.22 1.44 324
6-31G 0.0132 0.0310 0.21 1.45 324
6-31G(d) 0.0053 0.0081 0.07 0.33 504
6-31+G(d) 0.0049 0.0078 0.07 0.35 648
6-311G(d) 0.0060 0.0088 0.06 0.33 648
6-31G(2d) 0.0028 0.0042 0.04 0.12 684
6-311+G(d) 0.0030 0.0044 0.03 0.13 936
cc-pVDZ 0.0072 0.0101 0.04 0.28 504
aug-cc-pVDZ 0.0069 0.0093 0.04 0.15 828
cc-pVTZ 0.0001 0.0005 0.01 0.09 1080
aug-cc-pVTZ 0.0001 0.0004 0.01 0.05 1656
cc-pVQZ 0.0000 0.0000 0.00 0.00 1980

Table 2 Relative energies and HOMO-LUMO gaps calculated with BPW91/cc-pVQZ (unit: kcal/mol)

Isomer Symmetry Relative energy HOMO-LUMO gap
1 C, 82.622 4.562
2 D, 103.577 14.590
3 Ci 56.841 7.624
4 C 75.720 8.785
5 D, 85.016 19.196
6 Dyqg 34.809 14.326
7 C 37.829 7.668
8 Cs 23.671 13.805
9 Cyy 9.217 10.216
10 C, 44.821 8.396
11 C, 12.917 12.218
12 C, 8.272 9.588
13 Dsp 34.177 10.285
14 Dyg 0.747 9.726
15 Dgh 0.000 11.025

deviation (MaxD) for bond lengths and angles with respect
to the results using the largest basis set, cc-pVQZ, are listed
in Table 1. It is noteworthy that the geometry parameters
of fifteen C;¢ isomers are insensitive to the basis sets. With
the smallest basis set we employed, 3-21G, the RMS devia-
tions (MaxD) for bond lengths and angles are only 0.013 A
(0.035A) and 0.36°(1.61°), respectively. In the following
section, we have discussed basis-set convergence on rela-
tive energies and HOMO-LUMO energy gaps of fullerene
isomers. The absolute values of relative energies and HOMO-
LUMO gaps calculated at the BPW91/cc-pVQZ level were
listed in Table 2.

Relative stability Table 3 summarizes RMS deviation and
MaxD of relative energies of each isomer, with respect to
the results using the largest basis set, cc-pVQZ. We could
not calculate Cs¢ isomers with aug-cc-pVQZ for practical
reasons, but the effects of diffuse functions on the relative
energies (A Egirr) would be marginal for cc-pVQZ, because
the A Eg values are less than 0.4 kcal/mol with cc-pVDZ
and cc-pVTZ, and the RMS deviations for A Eg are 0.26
and 0.16 kcal/mol with cc-pVDZ and cc-pVTZ, respectively.

The lowest energy species is calculated to be isomer
15 (Dgy) for all basis sets except 3-21G, 4-31G, 6-31G,

and 6-31G(d), and isomer 14 (D,q) is comparable in en-
ergy to isomer 15. With 3-21G, 4-31G, and 6-31G basis sets,
the RMS deviations (MaxD) amount to 3.70 (8.01), 1.81
(3.03), and 2.02 (3.44)kcal/mol, respectively, but sharply
decrease to 0.65 (0.89) kcal/mol with 6-31G(d), which shows
that including a d-type polarization exponent is very impor-
tant in evaluating the relative energies. The cc-pVDZ basis
set also provides a similar deviation to that of 6-31G(d).
The diffuse functions are not helpful in decreasing the devi-
ation. A Pople-type triple-zeta basis set, 6-311G(d), reduces
the deviation to 0.39 (0.67) kcal/mol. The relative energies
with 6-31G(2d) show that the addition of another d polari-
zation exponent to 6-31G(d) decreases the deviation to 0.30
(0.55) kcal/mol, which is comparable to the deviation with
6-311G(d). The cc-pVTZ basis set presents small deviations
of 0.07 (0.14) kcal/mol, however, this basis set would be too
expensive to calculate energies, particularly for higher fulle-
renes.

HOMO and LUMO energy gap The HOMO-LUMO energy
separations were estimated using the thirteen basis sets,
and their values range from 4.5kcal/mol (isomer 1) to
19.2 kcal/mol (isomer 5) using cc-pVQZ. Table 4 lists the
RMS deviations and MaxD for HOMO-LUMO energy gaps,
compared with those of cc-pVQZ. With the 3-21G, 4-31G,
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Table 3 Root mean square (RMS) deviations and maximum deviation (MaxD) of relative stability of Csg isomers, comparing with those of

cc-pVQZ. (unit: kcal/mol)

Basis set RMS Max Number of basis sets
3-21G 3.70 8.01 324
4-31G 1.81 3.03 324
6-31G 2.02 344 324

6-31G(d) 0.65 0.89 504

6-31+G(d) 0.77 1.51 648
6-311G(d) 0.39 0.67 648
6-31G(2d) 0.30 0.55 684
6-311+G(d) 0.52 1.17 936
cc-pVDZ 0.50 0.98 504
aug-cc-pVDZ 0.70 1.29 828
cc-pVTZ 0.07 0.14 1080
aug-cc-pVTZ 0.12 0.28 1656
cc-pVQZ 0.00 0.00 1980

Table 4 Root mean square (RMS) deviations and maximum deviation (MaxD) of the energy difference between HOMO and LUMO of Cse

isomers, comparing with those of cc-pVQZ. (unit : kcal/mol)

Basis set RMS Max Number of basis sets
3-21G 1.49 2.32 324
4-31G 1.57 2.78 324
6-31G 1.62 2.98 324

6-31G(d) 0.32 0.97 504

6-31+G(d) 0.34 0.77 648
6-311G(d) 0.14 0.33 648
6-31G(2d) 0.22 0.48 684
6-311+G(d) 0.13 0.26 936
cc-pVDZ 0.36 0.60 504
aug-cc-pVDZ 0.29 0.46 828
cc-pVTZ 0.03 0.06 1080
Aug-cc-pVTZ 0.01 0.03 1656
cc-pVQZ 0.00 0.00 1980

and 6-31G basis sets, the deviations are 1.49 (2.32),
1.57(2.78),and 1.62 (2.98) kcal/mol, respectively, but sharply
decrease to 0.32 (0.97) kcal/mol with the 6-31G(d) basis set.
These results show that inclusion of a d polarization expo-
nent is also important in estimating the HOMO-LUMO en-
ergy gaps of Csg isomers. Although the addition of diffuse
functions generally decreases the deviations, their effects are
marginal (<0.2 kcal/mol). Instead, 6-311G(d) provides good
estimates of HOMO-LUMO energy gaps with a deviation
of 0.14 (0.33) kcal/mol, and has a slightly better quality than
6-31G(2d).

Many researchers have employed combined methods
[34-36], which use a low-level quality of basis set for geom-
etry optimization and high-level quality of basis set for the
energies at the optimized geometry. We calculated relative
stabilities and HOMO-LUMO energy gaps with BPW91/6-
311G(d) at the BPW91/3-21G and BPW91/6-31G geome-
tries, and compared their results with those obtained with
BPW91/6-311G(d). BPW91/6-311G(d)//BPW91/3-21G and
BPW91/6-311G(d)//BPW91/6-31G predict the relative sta-
bilities with deviations of 0.11 (0.19) and 0.09 (0.16) kcal/mol,
respectively, and the HOMO-LUMO energy gaps with
deviations of 0.47 (0.86) and 0.77 (1.33) kcal/mol, respec-
tively. Overall, the combined methods provide accurate

relative energies and HOMO-LUMO energy gap with a good
performance-to-cost ratio, supporting that the geometries ob-
tained from the basis sets without any polarization function
are quite reliable.

Conclusions

The current work presents a systematic theoretical study on
fifteen Cs¢ isomers examining the role of the quality of basis
sets in evaluating the geometry parameters, the relative ener-
gies and the HOMO-LUMO energy separations. It is worth
noticing that the geometry parameters of fifteen Cs¢ isomers
are insensitive to basis sets. While the diffuse functions are
not helpful in improving the relative energies of Csg iso-
mers, the inclusion of one set of d-type polarization func-
tions is found to be essential for both relative energies and
the HOMO-LUMO energy gaps. At least a double-zeta plus
polarization basis set should be used to obtain reliable ener-
gies within chemical accuracy (1.0 kcal/mol), and a triple-
zeta plus polarization basis set is suggested to provide accu-
rate energies of fullerenes at a reasonable computational cost.
Our calculations show that the errors caused by basis set defi-
ciency are not significant in DFT calculations for fullerenes,
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provided that the Pople-type basis set having at least a 6-
31G(d) quality is used.
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